F(x)=3x^2+x-16

Simple and best practice solution for F(x)=3x^2+x-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=3x^2+x-16 equation:



(F)=3F^2+F-16
We move all terms to the left:
(F)-(3F^2+F-16)=0
We get rid of parentheses
-3F^2+F-F+16=0
We add all the numbers together, and all the variables
-3F^2+16=0
a = -3; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-3)·16
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-3}=\frac{0-8\sqrt{3}}{-6} =-\frac{8\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-3} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-3}=\frac{0+8\sqrt{3}}{-6} =\frac{8\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-3} $

See similar equations:

| -4t–9=-5t–4 | | 6(13.2)+5y=121 | | v=150/1 | | 4x^2-7=-4x | | 4b=12=96 | | -7–7z=-8z–6 | | -3q=-2q+4 | | (3)^3*(x)^2-7=6^1/3 | | 9x+27=-78 | | (3x+3)(3x-6)=0 | | 5m+22=14-3m | | 3f+17=68 | | -4+2b=-7+b | | 12*x=0 | | B=9/7(j-78) | | 7(9x-4)=41 | | 2*n=11=-7 | | 6y-2y=4y2 | | 8(3x-4)=44 | | X^2+y^2+12y+11=0 | | (8-x)-6=1 | | 3r-19=r+13 | | 2+n=11=-7 | | 3x+x+x=40 | | 2n+11=-7 | | 13x+9=67 | | (8−​x)−6=1 | | 8(9x-4)=42 | | -3w+5=2 | | 5p+4=39 | | 4x²+,025=16,25 | | (x-3)^2=(x+6)(x-6) |

Equations solver categories